검색결과 리스트
글
Image Processing with CUDA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | // main.cpp #include <cv.hpp> #include "kernel.h" using namespace cv; int main() { // Open a webcamera VideoCapture camera(0); Mat frame; if (!camera.isOpened()) return -1; camera >> frame; // create CPU/GPU shared images - one for the initial and one for the result Mat sGray(frame.size(),CV_8U,createImageBuffer(frame.size().width * frame.size().height)); Mat dGray(frame.size(),CV_8U,createImageBuffer(frame.size().width * frame.size().height)); Mat eGray(frame.size(),CV_8U,createImageBuffer(frame.size().width * frame.size().height)); cvtColor(frame, dGray, CV_BGR2GRAY); cvtColor(frame, eGray, CV_BGR2GRAY); // Create the capture windows namedWindow("Source"); namedWindow("Greyscale"); namedWindow("Blurred"); namedWindow("Sobel"); char c; // Loop while capturing images while (1) { // Capture the image and store a gray conversion for the gpu camera >> frame; cv::cvtColor(frame, sGray, CV_BGR2GRAY); boxfilter(frame.size().width, frame.size().height, sGray.data, dGray.data, 3, 3); //boxfilterCPU(frame.size().width, frame.size().height, sGray.data, dGray.data, 3, 3); sobelfilter(frame.size().width, frame.size().height, dGray.data, eGray.data); // Show the results cv::imshow("Source", frame); cv::imshow("Greyscale", sGray); cv::imshow("Blurred", dGray); cv::imshow("Sobel", eGray); c = cv::waitKey(10); if (c == 27) break; } // Exit destroyImageBuffer(sGray.data); destroyImageBuffer(dGray.data); destroyImageBuffer(eGray.data); return 0; } | cs |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | // kernel.h #ifndef _KERNEL_H_ #define _KERNEL_H_ #include <iostream> void boxfilter(int iw, int ih, unsigned char *source, unsigned char *dest, int bw, int bh); void boxfilterCPU(int iw, int ih, unsigned char *src, unsigned char *dst, int bw, int bh); void sobelfilter(int iw, int ih, unsigned char *source, unsigned char *dest); unsigned char* createImageBuffer(unsigned int bytes); void destroyImageBuffer(unsigned char* bytes); #endif | cs |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | #include "cuda_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include "kernel.h" void boxfilterCPU(int iw, int ih, unsigned char *src, unsigned char *dst, int bw, int bh) { for (int m = 0; m < ih; m++) { for (int n = 0; n < iw; n++) { int count = 0; float sum = 0.0; for (int j = -(bh / 2); j <= (bh / 2); j++) { for (int i = -(bw / 2); i <= (bw / 2); i++) { // Verify that this offset is within the image boundaries if ((n + i) < iw && (n + i) >= 0 && (m + j) < ih && (m + j) >= 0) { sum += (float)src[((m + j) * iw) + (n + i)]; count++; } } } // Average the sum sum /= (float)count; dst[(m * iw) + n] = (unsigned char)sum; } } } __global__ void boxfilter_kernel(int iw, int ih, unsigned char *source, unsigned char *dest, int bw, int bh) { // Calculate our pixel's location int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; // Variables to store the sum int count = 0; float sum = 0.0; // Do the blur operation by summing the surround pixels for (int j = -(bh / 2); j <= (bh / 2); j++) { for (int i = -(bw / 2); i <= (bw / 2); i++) { // Verify that this offset is within the image boundaries if ((x + i) < iw && (x + i) >= 0 && (y + j) < ih && (y + j) >= 0) { sum += (float)source[((y + j) * iw) + (x + i)]; count++; } } } // Average the sum sum /= (float)count; dest[(y * iw) + x] = (unsigned char)sum; } __global__ void sobelfilter_kernel(int iw, int ih, unsigned char *source, unsigned char *dest) { // Calculate our pixel's location int x = (blockIdx.x * blockDim.x) + threadIdx.x; int y = (blockIdx.y * blockDim.y) + threadIdx.y; // Operate only if we are in the correct boundaries if (x > 0 && x < iw - 1 && y > 0 && y < ih - 1) { int gx = -source[iw*(y - 1) + (x - 1)] + source[iw*(y - 1) + (x + 1)] + -2 * source[iw*(y)+(x - 1)] + 2 * source[iw*(y)+(x + 1)] + -source[iw*(y + 1) + (x - 1)] + source[iw*(y + 1) + (x + 1)]; int gy = -source[iw*(y - 1) + (x - 1)] - 2 * source[iw*(y - 1) + (x)] - source[iw*(y - 1) + (x + 1)] + source[iw*(y + 1) + (x - 1)] + 2 * source[iw*(y + 1) + (x)] + source[iw*(y + 1) + (x + 1)]; dest[iw*y + x] = (int)sqrt((float)(gx)*(float)(gx)+(float)(gy)*(float)(gy)); } } void boxfilter(int iw, int ih, unsigned char *source, unsigned char *dest, int bw, int bh) { // allocate memory for the bitmap in GPU memory unsigned char *dev_source, *dev_dest; cudaHostGetDevicePointer(&dev_source, source, 0); cudaHostGetDevicePointer(&dev_dest, dest, 0); //cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags() // Run the boxfilter kernel dim3 blocks(iw / 16, ih / 16); dim3 threads(16, 16); // Execute the kernel boxfilter_kernel << <blocks, threads >> >(iw, ih, dev_source, dev_dest, bw, bh); cudaThreadSynchronize(); } void sobelfilter(int iw, int ih, unsigned char *source, unsigned char *dest) { // allocate memory for the bitmap in GPU memory unsigned char *dev_source, *dev_dest; cudaHostGetDevicePointer(&dev_source, source, 0); cudaHostGetDevicePointer(&dev_dest, dest, 0); // Run the boxfilter kernel dim3 blocks(iw / 16, ih / 16); dim3 threads(16, 16); // Execute the kernel sobelfilter_kernel << <blocks, threads >> >(iw, ih, dev_source, dev_dest); cudaThreadSynchronize(); } unsigned char* createImageBuffer(unsigned int bytes) { unsigned char *ptr = NULL; cudaSetDeviceFlags(cudaDeviceMapHost); cudaHostAlloc(&ptr, bytes, cudaHostAllocMapped); return ptr; } void destroyImageBuffer(unsigned char* bytes) { cudaFreeHost(bytes); } | cs |
'프로그래밍 > CUDA' 카테고리의 다른 글
CUDA 스레드 구조 (0) | 2014.12.06 |
---|---|
CUDA 기본 문법 정리 (0) | 2014.12.06 |
설정
트랙백
댓글
글
CVPR 2015 Code List
글자수 제한 같은거 있어서 짤릴지 모르겠는데, 암튼 올려 봅니다.
학생들에게 논문은 두 종류로 나뉘죠. 소스코드가 있는 것과 그렇지 않은 걸로....
cvpr 2015 논문 중에서 소스코드가 있는 것들만 추려 봤는데, 다는 못 찾은 거 같고 절반 이상은 찾은 거 같습니다.
이미 공개된 것과 공개 예정인 것으로 나눠봤습니다.
논문에는 공개했다고 써놓고, 실제로 사이트 가보면 coming soon이라고 되있는 것들도 꽤 있네요.
========================================================
이미 공개
Andelo Martinovic et. al.
3D All The Way: Semantic Segmentation of Urban Scenes From Start to End in 3D
https://bitbucket.org/amartino/facade3d
Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao
3D ShapeNets: A Deep Representation for Volumetric Shape Modeling
http://3dshapenets.cs.princeton.edu/3DShapeNetsCode.zip
Sebastian Haner, Kalle Åström
Absolute Pose for Cameras Under Flat Refractive Interfaces
http://github.com/sebhaner/refractive_pose
Hae-Gon Jeon, Jaesik Park, Gyeongmin Choe, Jinsun Park, Yunsu Bok, Yu-Wing Tai and In So Kweon
Accurate Depth Map Estimation from a Lenslet Light Field Camera
https://drive.google.com/…/0B2553ggh3QTcS01zU0RjOG5FTjQ/view
Christoph Käding, Alexander Freytag, Erik Rodner, Paul Bodesheim, and Joachim Denzler
Active Learning and Discovery of Object Categories in the Presence of Unnameable Instances
https://github.com/cvjena/
Epameinondas Antonakos, Joan Alabort-i-Medina, Stefanos Zafeiriou
Active Pictorial Structures
http://www.menpo.org/
Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem and Juan Carlos Niebles
ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding
http://activity-net.org
David Perra, Rohit Kumar Gupta, Jan-Micheal Frahm
Adaptive Eye-Camera Calibration for Head-Worn Devices
http://cs.unc.edu/~jmf/publications/gaze_release.7z
Neel Shah, Vladimir Kolmogorov and Christoph H. Lampert.
A Multi-Plane Block-Coordinate Frank-Wolfe Algorithm for Training Structural SVMs with a Costly max-Oracle.
http://pub.ist.ac.at/~vnk/software/SVM-v1.02.zip
Bo Xin, Yuan Tian, Yizhou Wang, Wen Gao
Background Subtraction via Generalized Fused Lasso Foreground Modeling
http://idm.pku.edu.cn/st…/wangyizhou/code/code_bs_cvpr15.rar
Peixian Chen, Naiyan Wang, Nevin L. Zhang, and Dit-Yan Yeung.
Bayesian adaptive matrix factorization with automatic model selection
http://peixianc.me/amf_codes.zip
Tali Dekel, Shaul Oron, Michael Rubinstein, Shai Avidan, William T. Freeman
Best-Buddies Similarity for Robust Template Matching
http://people.csail.mit.edu/…/BBS_code_and_data_release_v1.…
Balntas, Vassileios and Tang, Lilian and Mikolajczyk, Krystian,
BOLD - Binary Online Learned Descriptor For Efficient Image Matching,
https://github.com/vbalnt/bold
C. Xu, S.-H. Hsieh, C. Xiong, and J. J. Corso.
Can humans fly? Action understanding with multiple classes of actors
http://web.eecs.umich.edu/~jjcorso/r/a2d/
amélie royer, christoph h. lampert.
"classifier adaptation at prediction time"
http://pub.ist.ac.at/…/Classifier_Adaptation_At_Prediction_…
Nebehay, Georg and Pflugfelder, Roman
Clustering of Static-Adaptive Correspondences for Deformable Object Tracking
https://github.com/gnebehay/CppMT
Xiao, Yao and Lu, Cewu and Tsougenis, Efstratios and Lu, Yongyi and Tang, Chi-Keung,
Complexity-Adaptive Distance Metric for Object Proposals Generation
http://www.cse.ust.hk/~yxiaoab/cvpr2015/files/Release.zip
Chris Sweeney Laurent Kneip Tobias H¨ollerer Matthew Turk
Computing Similarity Transformations from Only Image Correspondences
http://cs.ucsb.edu/~cmsweeney/theia/
Seungryung Kim, Dongbo Min, Bumsub Ham, Seungchul Ryu, Minh N. Do, and Kwanghoon Sohn,
DASC: Dense Adaptive Self-Correlation Descriptor for Multi-modal and Multi-spectral Correspondence
http://seungryong.github.io/…/DASCdescriptor_CVPR2015_v1.0.…
Nguyen A, Yosinski J, Clune J.
"Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images".
https://github.com/Evolving-AI-Lab/fooling
Andrej Karpathy, Li Fei-Fei
Deep Visual-Semantic Alignments for Generating Image Descriptions
https://github.com/karpathy/neuraltalk
Fatma Güney and Andreas Geiger
Displets: Resolving Stereo Ambiguities using Object Knowledge
http://www.cvlibs.net/projects/displets/
J. Dong and S. Soatto.
Domain-Size Pooling in Local Descriptors: DSP-SIFT.
http://vision.ucla.edu/~jingmi…/…/dsp/dsp_toolbox_v0.0.2.zip
Wulff and Black,
"Efficient Sparse-to-Dense Optical Flow Estimation using a Learned Basis and Layers
https://github.com/jswulff/pcaflow
Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui and Cordelia Schmid
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow
http://pascal.inrialpes.fr/…/epicf…/files/EpicFlow_v1.00.zip
Yan Li et. al.
Face Video Retrieval with Image Query via Hashing across Euclidean Space and Riemannian Manifold
http://vipl.ict.ac.cn/resources/codes
Jon Long, Evan Shelhamer, Trevor Darrell
Fully Convolutional Networks for Semantic Segmentation
http://www.cs.berkeley.edu/~jonlong/
Xiangyu Zhu, Zhen Lei, Junjie Yan, Dong Yi, Stan Z. Li,
“High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild”
http://www.cbsr.ia.ac.cn/…/xiangyuzhu/projects/HPEN/main.htm
S. H. Khatoonabadi, N. Vasconcelos, I. V. Bajić, and Y. Shan,
How many bits does it take for a stimulus to be salient?"
http://mcl.ensc.sfu.ca/software/kvbs_cvpr2015.rar
http://www.svcl.ucsd.edu/projects/hossein/kvbs_cvpr2015.rar
Yuting Zhang, Kihyuk Sohn, Ruben Villegas, Gang Pan, Honglak Lee,
Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
https://github.com/YutingZhang/fgs-obj
Hoo-Chang Shin Le Lu Lauren Kim Ari Seff Jianhua Yao Ronald M. Summers
Interleaved Text/Image Deep Mining on a Large-Scale Radiology Database
https://github.com/rsummers11/CADLab
A. Milan, L. Leal-Taixe, K. Schindler and I. Reid
Joint Tracking and Segmentation of Multiple Targets
https://bitbucket.org/amilan/segtracking
Ganzhao Yuan, and Bernard Ghanem.
l0TV: A New Method for Image Restoration in the Presence of Impulse Noise.
http://yuanganzhao.weebly.com/uploa…/…/7/5/10759809/l0tv.zip
D. Sun, E. B. Sudderth, and H. Pfister
Layered RGBD Scene Flow Estimation
http://people.seas.harvard.edu/…/2015/rgbd_layered_flow_cod…
Sergey Zagoruyko, Nikos Komodakis,
Learning to Compare Image Patches via Convolutional Neural Networks"
https://github.com/szagoruyko/cvpr15deepcompare
Jeff Donahue et. al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description},
http://jeffdonahue.com/lrcn/
A. Shekhovtsov, P. Swoboda and B. Savchynskyy
Maximum Persistency via Iterative Relaxed Inference with Graphical Models
http://cmp.felk.cvut.cz/~shekhovt/persistency/
Zhibin Hong, Zhe Chen, Chaohui Wang, Xue Mei, Danil Prokhorov, and Dacheng Tao
MUlti-Store Tracker (MUSTer): a Cognitive Psychology Inspired Approach to Object Tracking",
https://sites.google.com/…/multistore…/MUSTer_code_v1.1.zip…
Visesh Chari Simon Lacoste-Julieny Ivan Laptev Josef Sivic
On Pairwise Costs for Network Flow Multi-Object Tracking
https://github.com/viseshchari/TrackingNetFlow
Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z. Li,
"Person Re-identification by Local Maximal Occurrence Representation and Metric Learning."
http://www.cbsr.ia.ac.cn/users/scliao/projects/lomo_xqda/
Ijaz Akhter and Michael J. Black
Pose-Conditioned Joint Angle Limits for 3D Human Pose Reconstruction
http://poseprior.is.tue.mpg.de/
G. Tzimiropoulos,
"Project-Out Cascaded Regression with an application to Face Alignment",
https://www.dropbox.com/s/wtiuv36lji6ds60/po_cr_code_v1.zip…
YiChang Shih, Dilip Krishnan, Fredo Durand, William T. Freeman
Reflection Removal Using Ghosting Cues
https://www.dropbox.com/s/gah3aw…/dereflection_06102015.zip…
B. Ham, M. Cho, J. Ponce
Robust Image Filtering Using Joint Static and Dynamic Guidance
http://www.di.ens.fr/…/sdfil…/code/sdfilter-release-v1.1.zip
Changyang Li, Yuchen Yuan, Weidong Cai1, Yong Xia, and David Dagan Feng
Robust Saliency Detection via Regularized Random Walks Ranking
http://sydney.edu.au/…/~y…/cvpr2015/rrwr_matlab_cvpr2015.zip
W. Wang, J. Shen, F. Porikli,
Saliency-aware geodesic video object segmentation,
https://github.com/shenjianbing/SaliencySeg
Yin Wang, Caglayan Dicle, Mario Sznaier and Octavia Camps
Self Scaled Regularized Robust Regression
http://robustsystems.coe.neu.edu/…/sys…/code/CVPR15_S2R3.zip
Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja,
Single Image Super-Resolution from Transformed Self-Exemplars
https://github.com/jbhuang0604/SelfExSR
Fang Wang, Le Kang, and Yi Li
Sketch-based 3D Shape Retrieval using Convolutional Neural Networks
http://users.cecs.anu.edu.au/~yili/cnnsbsr/
Julian Straub, Trevor Campbell, Jonathan P. How, John W. Fisher III.
"Small-Variance Nonparametric Clustering on the Hypersphere"
https://github.com/jstraub/dpMMlowVar
Yan Xia, Kaiming He, Pushmeet Kohli, and Jian Sun
Sparse Projections for High-Dimensional Binary Codes
http://research.microsoft.com/…/people/kahe/cvp…/spbe_v1.zip
Fumin Shen, Chunhua Shen, Wei Liu, Heng Tao Shen,
"Supervised Discrete Hashing"
https://github.com/bd622/DiscretHashing
Zuffi, Silvia and Black, Michael J.
The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose,
http://stitch.is.tue.mpg.de/pre_download
Y. Verdie, K. M. Yi, P. Fua, and V. Lepetit.
"TILDE: A Temporally Invariant Learned DEtector.",
https://github.com/kmyid/TILDE/tree/v1.0.1
Abhijit Bendale, Terrance Boult
Towards OpenWorld Recognition
http://vast.uccs.edu/OpenWorld
Simone Frintrop, Thomas Werner, and Germán Martín García
Traditional Saliency Reloaded: A Good Old Model in New Shape
http://www.iai.uni-bonn.de/~frintrop/vocus2-version1.0.tgz
Aravindh Mahendran and Andrea Vedaldi.
"Understanding deep image representations by inverting them."
https://github.com/aravindhm/deep-goggle
Joan Alabort-i-Medina1, Stefanos Zafeiriou1
Unifying Holistic and Parts-Based Deformable Model Fitting
http://www.menpo.org/
M. Cho, S. Kwak, C. Schmid, J. Ponce
Unsupervised Object Discovery and Localization in the Wild: Part-based Matching with Bottom-up Region Proposals
http://www.di.ens.fr/w…/research/objectdiscovery/UODL_v1.zip
Chenxia Wu et. al.
Watch-n-Patch: Unsupervised Understanding of Actions and Relations
http://watchnpatch.cs.cornell.edu/
Fatemeh Shokrollahi Yancheshmeh et. al.
Unsupervised Visual Alignment with Similarity Graphs
https://bitbucket.org/kamara…/image_alignment-code/wiki/Home
=========================================================
공개 예정
Yongfang Cheng, Jose A Lopez, Octavia Camps, Mario Sznaier
A Convex Optimization Approach to Robust Fundamental Matrix Estimation
http://robustsystems.coe.neu.edu/?q=content/publications
L. Wang, Y. Qiao, and Xiaoou Tang,
Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors,
https://wanglimin.github.io/tdd/index.html
Marcus A. Brubaker, Ali Punjani and David Fleet
"Building Proteins in a Day: Efficient 3D Molecular Reconstruction"
http://www.cs.toronto.edu/~mbrubake/
Ross Girshick Forrest Iandola Trevor Darrell Jitendra Malik
Deformable Part Models are Convolutional Neural Networks
http://www.cs.berkeley.edu/~rbg/
Ching L. Teo, Cornelia Fermüller, Yiannis Aloimonos
Fast 2D Border Ownership Assignment
http://www.umiacs.umd.edu/~cteo/BOWN_SRF/
Saurabh Singh, Derek Hoiem and David Forsyth.
Learning a Sequential Search for Landmarks
http://vision.cs.uiuc.edu/projects/lssland/
Paul Wohlhart and Vincent Lepetit
Learning Descriptors for Object Recognition and 3D Pose Estimation
https://cvarlab.icg.tugraz.at/projects/3d_object_detection/
Philippe Weinzaepfel Jerome Revaud Zaid Harchaoui Cordelia Schmid
Learning to Detect Motion Boundaries
http://lear.inrialpes.fr/research/motionboundaries/
Mi Zhang, Jian Yao*, Menghan Xia, Yi Zhang, Kai Li, and Yaping Liu.
"Line-Based Multiple Label Energy Optimization for Fisheye Image Rectification and Calibration
http://cvrs.whu.edu.cn/projects/FIRC/
Xufeng Han et. at.
MatchNet: Unifying Feature and Metric Learning for Patch-based Matching
http://www.cs.unc.edu/~xufeng/matchnet/
Sean Bell, Paul Upchurch, Noah Snavely, Kavita Bala
Material Recognition in the Wild with the Materials in Context Database
http://opensurfaces.cs.cornell.edu/publications/minc/…
Yu-Wei Chao, Zhan Wang, Rada Mihalcea, and Jia Deng.
Mining Semantic Affordances of Visual Object Categories
http://www-personal.umich.edu/~ywchao/semantic_affordance/
Moritz Menze and Andreas Geiger
Object Scene Flow for Autonomous Vehicles
http://www.cvlibs.net/projects/objectsceneflow/
Jeong-Kyun Lee and Kuk-Jin Yoon
Real-time Joint Estimation of Camera Orientation and Vanishing Points
https://cvl.gist.ac.kr/…/real-time-joint-estimation-of-came…
Hyung Jin Chang Yiannis Demiris
Unsupervised Learning of Complex Articulated Kinematic Structures combining Motion and Skeleton Information
https://hyungjinchang.wordpress.com/…/kinematic-structure-…/
설정
트랙백
댓글
글
High Dynamic Range Imaging(HDR)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | // Reference : http://docs.opencv.org/3.0.0/d3/db7/tutorial_hdr_imaging.html // Examples : High Dynamic Range Imaging(HDR) #include <cv.hpp> #include <iostream> #include <fstream> using namespace std; using namespace cv; void loadExposureSqe(String path, vector<Mat>& images, vector<float>×) { path = path + std::string("/"); ifstream list_file((path + "list.txt").c_str()); string name; float val; while (list_file >> name >> val) { Mat img = imread(path + name); images.push_back(img); times.push_back(1 / val); } list_file.close(); } int main() { vector<Mat> images; vector<float> times; loadExposureSqe("hdr/exposures", images, times); Mat response; Ptr<CalibrateDebevec> calibrate = createCalibrateDebevec(); calibrate->process(images, response, times); Mat hdr; Ptr<MergeDebevec> merge_debevec = createMergeDebevec(); merge_debevec->process(images, hdr, times, response); Mat ldr; Ptr<TonemapDurand> tonemap = createTonemapDurand(2.2f); tonemap->process(hdr, ldr); Mat fusion; Ptr<MergeMertens> merge_mertens = createMergeMertens(); merge_mertens->process(images, fusion); imwrite("hdr/fusion.png", fusion * 255); imwrite("hdr/ldr.png", ldr * 255); imwrite("hdr/hdr.hdr", hdr); return 0; } | cs |
hdr.zip |
'컴퓨터비전/영상처리 > OpenCV' 카테고리의 다른 글
Non-Photorealistic Rendering (0) | 2015.07.30 |
---|---|
OpenCV SeamlessCloning (1) | 2015.07.30 |
OpenCV Principal Component Analysis(PCA) (0) | 2015.07.19 |
OpenCV Scene Change Detection(장면 전환 검출) (0) | 2015.07.19 |
Image Segmentation with Distance Transform and Watershed Algorithm (0) | 2015.07.13 |