검색결과 리스트
글
OpenCV Principal Component Analysis(PCA)
컴퓨터비전/영상처리/OpenCV
2015. 7. 19. 21:13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | #include <cv.hpp> #include <iostream> using namespace std; using namespace cv; void drawAxis(Mat &img, Point p, Point q, Scalar colour, const float scale = 0.2) { double angle; double hypotenuse; angle = atan2((double)p.y - q.y, (double)p.x - q.x); hypotenuse = sqrt((double)(p.y - q.y) * (p.y - q.y) + (p.x - q.x) * (p.x - q.x)); // Here we lengthen the arrow by a factor of scale q.x = (int)(p.x - scale * hypotenuse * cos(angle)); q.y = (int)(p.y - scale * hypotenuse * sin(angle)); line(img, p, q, colour, 1, CV_AA); // create the arrow hooks p.x = (int)(q.x + 9 * cos(angle + CV_PI / 4)); p.y = (int)(q.y + 9 * sin(angle + CV_PI / 4)); line(img, p, q, colour, 1, CV_AA); p.x = (int)(q.x + 9 * cos(angle - CV_PI / 4)); p.y = (int)(q.y + 9 * sin(angle - CV_PI / 4)); line(img, p, q, colour, 1, CV_AA); } double getOrientation(const vector<Point> &pts, Mat &img) { // construct a buffer used by the pca analysis int sz = static_cast<int>(pts.size()); Mat data_pts = Mat(sz, 2, CV_64FC1); for (int i = 0; i < data_pts.rows; ++i) { data_pts.at<double>(i, 0) = pts[i].x; data_pts.at<double>(i, 1) = pts[i].y; } //Perform PCA analysis PCA pca_analysis(data_pts, Mat(), CV_PCA_DATA_AS_ROW); //Store the center of the object Point cntr = Point(static_cast<int>(pca_analysis.mean.at<double>(0, 0)), static_cast<int>(pca_analysis.mean.at<double>(0, 1))); //Store and eigenvalues and eigenvectors vector<Point2d> eigen_vecs(2); vector<double> eigen_val(2); for (int i = 0; i < 2; ++i) { eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0), pca_analysis.eigenvectors.at<double>(i, 1)); eigen_val[i] = pca_analysis.eigenvalues.at<double>(i, 0); } //Draw the principal components circle(img, cntr, 3, Scalar(255, 0, 255), 2); Point p1 = cntr + 0.02 * Point(static_cast<int>(eigen_vecs[0].x * eigen_val[0]), static_cast<int>(eigen_vecs[0].y * eigen_val[0])); Point p2 = cntr - 0.02 * Point(static_cast<int>(eigen_vecs[1].x * eigen_val[1]), static_cast<int>(eigen_vecs[1].y * eigen_val[1])); drawAxis(img, cntr, p1, Scalar(0, 255, 0), 1); drawAxis(img, cntr, p2, Scalar(255, 255, 0), 5); // orientation in radins double angle = atan2(eigen_vecs[0].y, eigen_vecs[0].x); return angle; } int main() { Mat src = imread("img/pca_test1.jpg"); if (!src.data || src.empty()) { cout << "can't not load image" << endl; return EXIT_FAILURE; } imshow("Src", src); //Convert Image to grayScale Mat gray; cvtColor(src, gray, COLOR_BGR2GRAY); // Convert image to Binary Mat bw; threshold(gray, bw, 50., 255., CV_THRESH_BINARY || CV_THRESH_OTSU); // Find all the contours in the thresholded image vector<Vec4i> hierarchy; vector<vector<Point>> contours; findContours(bw, contours, hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_NONE); for (size_t i = 0; i < contours.size(); ++i) { // Calculate the area of each contour double area = contourArea(contours[i]); if (area < 1e2 || 1e5 < area) continue; drawContours(src, contours, static_cast<int>(i), Scalar(0, 0, 255), 2, 8, hierarchy, 0); getOrientation(contours[i], src); } imshow("output", src); waitKey(0); return 0; } | cs |
'컴퓨터비전/영상처리 > OpenCV' 카테고리의 다른 글
OpenCV SeamlessCloning (1) | 2015.07.30 |
---|---|
High Dynamic Range Imaging(HDR) (2) | 2015.07.19 |
OpenCV Scene Change Detection(장면 전환 검출) (0) | 2015.07.19 |
Image Segmentation with Distance Transform and Watershed Algorithm (0) | 2015.07.13 |
OpenCV Image Filtering (0) | 2015.07.13 |